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Mesenchymal stem cells for the treatment of 
neurodegenerative disease

Different populations of adult stem cells that 
can contribute to the regeneration of muscle 
[1,2], liver [3–6], heart [7–10] and vasculature have 
been described [11–13]; although the mechanisms 
by which this is accomplished are still not com-
pletely understood. However, human mesenchy-
mal stem cells (hMSCs) are known to secrete 
a variety of cytokines and growth factors that 
have both paracrine and autocrine activities for 
damaged tissues, including the brain. The lead-
ing theory of tissue repair and regeneration by 
adult mesenchymal stem cells (MSCs) is that the 
mechanism of action is based upon the innate 
functions of the stem cells: the injected stem 
cells home to the injured area, in particular to 
hypoxic, apoptotic or inflamed areas, and release 
trophic factors that hasten endogenous repair. 
These secreted bioactive products can suppress 
the local immune system; enhance angiogenesis; 
reduce levels of free radicals; inhibit fibrosis and 
apoptosis; and stimulate recruitment, retention, 
proliferation and differentiation of tissue-resid-
ing stem cells. These paracrine effects are distinct 
from the classical model of direct differentiation 
of stem cells into the tissue to be regenerated.

Mesenchymal stem cells can be expanded 
from normal donors in large quantities and 
can be infused without tissue matching, since 
they shield themselves from the immune system 
[14]. Owing to the fact that MSCs present such 
a promising tool for cell therapy, a variety of 
studies initially focused not only on their char-
acterization, but also on their utility in the treat-
ment of several diseases in animal models. While 
MSCs considerably contributed to the recovery 
of tissues in models of myocardial infarction [15], 
stroke [16,17], meniscus injury [18] and limb isch-
emia [19], the percentage of engrafted MSC was 
low in comparison with the recipient tissue cells, 
suggesting that their efficacy relies upon actions 
other than direct differentiation. Kinnaird et al. 
demonstrated that MSC-conditioned media 
stimulated endothelial cell proliferation and 
migration in vitro, and the injection of MSC-
conditioned media into mice that had undergone 
hind limb ischemia was sufficient to mediate 
regeneration of the blood flow in the injured limb 
[20]. Similar results have been demonstrated with 
a cardiac infarction model [21], and the secretion 
of multiple angiogenic cytokines from MSCs 
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has been demonstrated. HGF, FGF‑2, IGF‑I 
and VEGF have all been detected in MSC-
conditioned media. The evidence seems to point 
toward the theory that a complex set of trophic 
factors secreted by MSCs significantly contrib-
utes to injury repair in vivo, through stimulat-
ing angiogenesis, reducing oxidative stress and 
decreasing apoptosis. 

Mesenchymal stem cells have been found 
to produce improvements in disease models; 
although a limited number of the cells could be 
demonstrated to be stably engrafted. A mystery 
that remains in the MSC field is that, in cases 
of acute injury or inflammation, MSCs respond 
to the injury robustly but only transiently, and 
do not become an enduring part of the repaired 
tissue or vasculature, to any significant degree. 
We have studied this in immune-deficient mice 
that cannot reject the human cells, so the loss of 
MSC appears to be independent of an immune 
rejection [19,22–24]. The same data have been 
obtained in large animal models. By contrast, 
when labeled MSCs are cultured in the same 
way, and infused intravenously into immune 
deficient mice that have low-level systemic 
damage from irradiation or a chronic disease, 
or no damage at all, the cells migrate through 
all tissues in a relatively evenly dispersed and 
long-lasting manner [22,25]. We have recov-
ered human MSCs from numerous organs of 
the mice at time points from 1 to 18 months 
post-transplantation in the cases [22,23,25–27], 
whereas, in the acute injury setting, they are 
only transiently recovered and virtually unde-
tectable at the area of tissue damage at 1 month 
postinfusion [8,24]. Hypoxic preconditioning of 
the MSCs enhanced their reparative function 
in a tissue ischemia model [28]. Further studies 
must be conducted in order to better under-
stand the duration of the residence of infused 
MSCs in tissues, including the brain, and 
the mechanisms that recruit and retain them 
in chronic versus acute tissue damage. This 
knowledge will allow the most effective use of 
MSC-based cellular therapies.

MSCs in neural repair: an overview
The dogma that cells of the CNS could never 
regenerate has been challenged in the last 
decade with studies demonstrating new, migrat-
ing stem cells in the brain in many rodent injury 
models, as well as findings of new neurons in 
the adult human hippocampus [28–31]. There is 
currently a great deal of interest in the use of 
MSCs to treat neurodegenerative diseases, in 
particular those that are fatal and difficult to 

treat, through providing neurotrophic factors to 
encourage repair and, potentially, new growth 
of neurons. Proposed regenerative approaches 
include delivery via intracerebral or intrathe-
cal injection, or even infusion via an intranasal 
route [28]. Therapies will capitalize on innate 
trophic support from MSCs or from the deliv-
ery of augmented growth factors, such as brain-
derived neurotrophic factor (BDNF) or glial-
derived neurotrophic factor (GDNF), into the 
brain to support injured neurons, using geneti-
cally engineered MSCs as the delivery vehicles. 

Upon transplantation, MSCs in the brain 
promote endogenous neuronal growth, decrease 
apoptosis and regulate inflammation, primar-
ily through the use of secreted factors. MSCs 
can mediate modification of the damaged tis-
sue microenvironment to enhance endogenous 
neural regeneration and protection. MSCs 
transplanted at sites of nerve injury have been 
demonstrated to promote functional recov-
ery by producing trophic factors that induce 
survival and regeneration of host neurons [29]. 
Transplantation of human bone marrow stem 
cells into the brain of immunodeficient mice 
markedly increased the proliferation of endog-
enous neural stem cells [30]. In an experimen-
tal allergic encephalomyelitis model of multiple 
sclerosis (MS), rodents that received an intra-
ventricular infusion of MSCs were found to 
have almost twice the number of axons as con-
trol animals [31]. Although candidate molecules 
are under investigation, further detailed studies 
are needed to define the factors responsible for 
the MSC-mediated induction of proliferation 
in resident neural stem cells, in order to best 
capitalize upon this type of therapy for the 
repair of neurodegenerative diseases.

Numerous clinical trials have demonstrated 
the biosafety of systemic infusion of alloge-
neic MSCs into patients with various diseases. 
Monitoring of biosafety aspects has been per-
formed throughout these trials. For direct infu-
sion of MSCs into the brain or spinal cord, the 
biosafety aspects will be monitored extremely 
carefully. Risks could include development of 
cytogenetic abnormalities in cultured cells or 
ectopic differentiation to other tissue lineages. 
The development of cytogenetic abnormalities 
when MSCs are cultured for a long period of 
time, past the crisis point, can be observed in 
rodent MSCs, which do not reflect hMSC bio
logy well and are almost always riddled with 
phagocytic monocyte/macrophage elements [23]. 
There has been one report of a karyotypic abnor-
mality occuring in hMSCs that were cultured 
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in conditions that would never be allowed in a 
good manufacturing practice or good laboratory 
practice setting [32]. When human MSCs are cul-
tured under good laboratory practice/good man-
ufacturing practice conditions, adverse events 
have not been observed. We have published a 
decade-long biosafety study on this aspect of 
their clinical safety profile [26].

However, a potential risk for infusion of 
MSCs into the spinal cord or brain is that they 
have potent revascularization capacity and will 
home to the hypoxic region around a tumor bed 
[33,34]. This tropism for the tumor or wound 
bed could result in enhanced revascularization 
and survival of a growing tumor. Therefore, 
in proposed cellular therapy trials an impor-
tant exclusion criteria is the lack of prior brain 
tumors or other cancers in the past 5 years. A 
pretreatment MRI, which would be carried 
out in many neurodegenerative disease trials 
to establish baseline, could also be used to rule 
out existing brain tumors.

Several groups have reported that MSCs can 
be induced to express neural markers in vitro, 
in particular after cocultivation with human 
or murine neurons or conditioned medium. 
However, although mature neurons with func-
tional activity can be generated in culture from 
neural stem cells [35,36], it has not been dem-
onstrated that mature neurons with signaling 
capacity can be generated from MSCs; calling 
into question the authenticity of this transdif-
ferentiation and the ability of MSCs to produce 
authentic neural derivatives [37]. MSCs can 
assimilate proteins and pieces of membrane 
from other cells. Thus, more definitive proof 
must be found for transendocytosis, trogocyto-
sis, exosomal transport, shuttle through nano-
tubules or cell-contact-dependent intercellular 
transfer to be ruled out. Cellular communica-
tion through the intercellular exchange of intact 
membrane patches, also called trogocytosis, is a 
ubiquitous phenomenon first described in cells 
of the immune system [38]; but, through the use 
of advanced videomicroscopy techniques, has 
also been observed in MSCs [Olson s , Nolta JA,, 

Unpublished Data]. Transfer of organelles as large 
as mitochondria from MSCs to damaged cells 
has also been described [39]. Therefore, reports 
of MSC transdifferentiating to neural pheno-
types, particularly after cocultivation with neu-
rons, must be cautiously interpreted. However, 
the ability of MSCs to migrate to areas of dam-
age in the brain and to secrete beneficial neuro-
restorative factors (Figure 1) is significant and is 
the primary focus of this article.

Expression of neuroregulatory 
factors by MSCs
Understanding the innate capacity of MSCs 
to influence neural cell growth, survival and 
neurite extension is currently a very important 
field of study. Detailed determination of which 
factors MSCs express, and under which condi-
tions, is key. Crigler et al. demonstrated that spe-
cific subpopulations of human MSCs expressed 
BDNF and b‑NGF but not neurotrophin‑3 and 
‑4. They used a co-culture assay to demonstrate 
that BDNF expression levels correlated with the 

Damaged
axon

Dendrites

Restored
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Synapse

Figure 1. Mesenchymal stem cell-mediated neurotrophic factor secretion to 
promote neuritogenesis and synaptic connection between damaged 
neurons. (A) Damaged neurons ‘round-up’ and retract axons, this prevents 
effective signaling between cells in the neural network. (B) Mesenchymal stem 
cells can promote axon extension to restore synaptic connections between neurons 
by secreting neurotrophic factors. Additional benefits from mesenchymal stem cells 
in the brain tissue are reduction in inflammation at sites of damage, increased 
vascularization, reduction of levels of free radicals and a local reduction in 
apoptosis of damaged cells.
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ability of MSC subclones to induce survival and 
neurite outgrowth in the SH-SY5Y neuroblas-
toma cell line. The effects were only partially 
inhibited by a neutralizing anti-BDNF anti-
body, indicating that other factors secreted by 
the MSCs also had neuroregulatory effects. The 
authors identified production of other neurite-
inducing factors, axon guidance and neural cell 
adhesion molecules, which contributed to the 
capacity of the MSCs to induce neuronal cell 
survival and nerve regeneration [29]. Wilkins 
et al. have also demonstrated that MSCs secrete 
BDNF and that addition of anti-BDNF neutral-
izing antibodies attenuated their neuroprotective 
effects. These studies help to, at least partially, 
determine the mechanisms of neuroprotection 
mediated by MSCs, and also validate the impor-
tant role for BDNF in neuronal protection [40].

The Wnt antagonist Dickkopf (Dkk)‑1 is 
another candidate for MSC-mediated neurito-
genesis. Endo et al. demonstrated that Dkk‑1 
promotes neurite outgrowth in Ewing sarcoma 
family tumor cells, which were identified as neu-
rites. This process appeared to occur by causing 
endogenous Wnts to switch from stimulation of 
the b‑catenin pathway to noncanonical signaling 
[41]. Etheridge et al. identified Dkk‑1 as a prod-
uct of MSCs [42], and Gregory and coworkers 
demonstrated that Dkk‑1 expression by MSCs is 
cell-density dependent [43]. Further study of the 
role of Dkk‑1 in MSC-mediated neuritogenesis 
is warranted. A deeper understanding of the pro-
cesses involved in axonal pathfinding is crucial 
if the system is to be manipulated to promote 
nervous system repair [44].

In addition to neurotrophic factors, the 
extracellular matrix molecules produced by 
MSCs have also been demonstrated to sup-
port neural cell attachment, growth and axonal 
extension [45]. Neurons on extracellular matrix 
derived from MSCs formed more complex and 
extended neurite networks than those cultured 
on poly‑d‑lysine [45]. Croft et al. demonstrated 
that soluble factors produced by MSCs promoted 
the survival of neurons in culture and promoted 
axonal growth in neuronal progeny [46]. They 
proposed mechanisms to manipulate MSCs 
in vitro, prior to transplantation, which could 
potentially further enhance the endogenous neu-
rogenic response to injury [46].

Mesenchymal stem cells also provide an excel-
lent platform from which to produce additional 
factors for neural regulation, which can be 
introduced using viral vectors under inducible 
promoters, for the treatment of specific diseases. 
Foremost among these are BDNF and GDNF. 

Discussion of these approaches in the context of 
treatments under consideration for a selection of 
neurodegenerative diseases are presented later.

Huntington’s disease
Huntington’s disease (HD) is a currently incur-
able inherited genetic disorder for which the 
condition of the patients inexorably worsens 
and their prognosis is, unfortunately, eventual 
death, following decline in emotion, move-
ment and, finally, cognition. The pathology of 
HD is caused by a variably sized polyglutamine 
expansion of the protein product of the hunt-
ingtin (htt) gene. Multiple disease mechanisms 
have been elucidated for HD and are currently 
under investigation in the search for therapeu-
tics. Currenly, the best hope for halting HD 
progression is to reduce or eliminate the mutant 
htt protein in the affected cells [47,48]. siRNAs 
have been demonstrated to be effective at reduc-
ing htt levels and ameliorating disease symptoms 
in animal models [49,50]. Exciting new data show 
that the mutant htt mRNA can be specifically 
targeted, while sparing the transcript produced 
by the normal allele [51–53]. The challenge for 
this technology is to deliver the siRNA into the 
human brain in a sustained, safe and effective 
manner. HD is a challenging disease to treat. 
Not only do the affected, dying neurons need 
to be salvaged or replaced, but also the levels of 
the toxic mutant protein must be diminished 
to prevent further neural damage and to halt 
progression of the movement disorders, and the 
physical and mental decline that is associated 
with HD.

Lescaudron and colleagues transplanted 
autologous bone marrow stem cells in the dam-
aged striatum of a rat HD model and reported 
that the transplant significantly reduced work-
ing memory deficits [54]. The transplanted cells 
remained undifferentiated but exerted trophic 
effects. Bantubungi et  al. reported that the 
lesioned environment of the striatum favored 
the proliferation and intralesional distribution 
of MSCs [55]. Several groups have demonstrated 
that striatal atrophy in models of HD is accom-
panied by the subsequent enlargement of lateral 
ventricles [56,57]. The reduction in volume of the 
lateral ventricle can, thus, be a good indicator 
of repair in HD correction studies. Amin et al. 
demonstrated that, MSC implantation into the 
striata of rats with a unilateral damage model of 
HD, striatal atrophies were significantly reduced 
and, consequently, the volume of the lateral 
ventricle returned to a significantly smaller size, 
approaching the normal contralateral ventricle 
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[56]. Their results demonstrated the potential 
for MSCs in the treatment of microanatomical 
defects in the motor disorders of HD. 

Data suggest that MSC implantation into 
the striatum could potentially delay the inexo-
rable loss of medium spiny neurons in HD. An 
important factor when considering the use of 
MSCs to help augment recovery and survival 
of striatal neurons for HD patients is that the 
MSCs implanted at adjacent sites should have 
the capacity to migrate into the most damaged 
areas in response to stress or death of medium 
spiny neurons, which are lost in HD. MSCs 
are known to migrate robustly, in response to 
injury in the brain. Delcroix et al. demonstrated 
that iron nanoparticle-labeled MSCs migrated 
from an implantation site in the subventricular 
zone microenvironment towards the olfactory 
bulb through the rostral migratory stream, only 
when a mechanical lesion of the olfactory bulb 
was performed [58]. They confirmed the known 
potential of iron-labeled MSCs to migrate 
towards areas of damage, even over a great dis-
tance in the brain. The migratory capacity of 
MSCs was further examined by transplanta-
tion of the cells at a distance from a quinolinic 
acid-induced striatal lesion, a rat model for HD. 
Migration was monitored using MRI scans fol-
lowed by histology. The engrafted MSCs were 
demonstrated to have migrated a great distance 
along the internal capsule toward the quinolinic 
acid-induced lesion in the striatum. They were 
demonstrated to have regenerated the damaged 
striatal dopaminergic nerve terminal network in 
this animal model for HD [59,60].

A human cellular therapy trial has already 
demonstrated progress in the treatment of HD 
by intracerebral implantation. Bachoud-Lévi 
and colleagues transplanted human fetal neural 
stem cells into the brains of five patients with 
HD [61,62]. Three out of the five patients with 
HD showed motor and cognitive improvements 
2  years after the fetal neural graft. Clinical 
improvement plateaued after 2 years and then 
showed variable decline 4–6  years after the 
implantation [61,62]. These and other studies 
demonstrate that cells can be safely implanted 
into the brain without adverse events. However, 
a major challenge yet to be robustly overcome is 
to induce the new neurons to make bona fide syn-
aptic connections. Co-transplantation of fetal or 
embryonic stem cell-derived neural grafts with 
MSCs to enhance neuritogenesis and to guide 
axonal pathfinding through areas of damage 
could be considered. Another confounding fac-
tor for the treatment of HD is that the brain 

microenvironment will be continually damaged 
owing to the presence of the mutant htt RNA 
and protein, even if new, healthy, neurons are 
implanted. Efforts to specifically knockdown the 
expression of this mutant htt RNA and protein 
prior to or simultaneously with the MSC-based 
therapies must be considered [51–53]. BDNF ther-
apy is a leading candidate for use in HD since it 
has been linked mechanistically with the under-
lying genetic defect. Striatal neurons depend on 
BDNF levels for function and survival [63]. In the 
later stages of HD, the levels of available BDNF 
plummet since the mutant htt protein and asso-
ciated factors interfere with normal trafficking 
of the protein [64,65]. This reduction of BDNF 
levels affects the onset and severity of the dis-
ease in HD mouse models [63]. Upregulation of 
BDNF in the forebrain of R6/1 mice (a model of 
HD) improves the disease symptomatology [66]. 
Additional transgenic rodent models of HD have 
also demonstrated amelioration of the disease 
phenotype by enforced exogenous expression 
of BDNF (reviewed in [67]). Thus, owing to its 
prosurvival effects in striatal neuropathology, 
BDNF is the main candidate for neuroprotective 
therapies (reviewed in [68]).

Mesenchymal stem cell transplantation may 
help stabilize the striatal environment by pro-
ducing anti-inflammatory cytokines and neu-
rotrophic factors, including BDNF, among 
others that they have been demonstrated to be 
produced in the brain. Dey et al. demonstrated 
that MSCs, especially those engineered to over-
express BDNF, had significant ameliorative 
effects on disease progression in a mouse model 
of HD [69]. The use of MSCs to deliver factors, 
both through their own innate responses and 
through engineering, has benefits over direct 
protein administration, because transplanted 
MSCs can provide sustained and long-term 
delivery of factors at supraphysiological levels, 
as we and others have demonstrated over the past 
two decades [22,23,27,70–73].

Efforts from our laboratory and others are 
currently evaluating the effects of BDNF 
expression from human MSCs implanted into 
the striata of immunocompromised HD mice. 
Using immune-deficient mouse models, we 
have recovered human MSCs that had main-
tained expression of the gene product from 
numerous organs, including the brain, at time 
points from 1 to 18 months post-transplantation 
[22,25,27,70,72,74,75]. We also performed a 10‑year-
long biosafety study to demonstrate that geneti-
cally engineered human MSCs are safe and do 
not cause adverse events in vivo [26]. The need 
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for safe and effective cellular therapies to treat 
HD is great, since current therapies only target 
symptoms, and there are currently no drugs or 
other treatments that effectively delay the inexo-
rable loss of striatal volume in affected patients.

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a relentless 
neurodegenerative disease caused by the selec-
tive destruction of motor neurons in the motor 
cortex, brainstem and spinal cord. The steady 
progressive loss of motor neurons throughout the 
neuraxis causes muscle atrophy, weakness and 
immobility. Premature death, typically within 
5 years of diagnosis, is inevitable and is most 
often caused by paralysis of respiratory muscles 
with subsequent respiratory failure. Currently 
ALS is incurable; treatment consists of therapies 
aimed at symptomatic relief and Rilutek – the 
only US FDA-approved disease-modifying drug 
for ALS, which provides modest life-prolonging 
benefit. Development of relevant therapies has 
been challenging and elusive, complicated by the 
lack of understanding of the underlying inciting 
pathophysiology.

Amyotrophic lateral sclerosis is largely a spo-
radic disease with an unclear cause. However, 
approximately 5–10% of patients diagnosed 
with ALS have an inherited, familial ALS form 
of the disease, which shares nearly identical clin-
ical and histopathologic hallmarks with sporadic 
ALS [76]. While many disease-causing mutations 
have been identified, the most common are point 
mutations within the gene encoding for Cu/Zn 
superoxide dismutase (SOD)1. This clear genetic 
link has led to the development of transgenic 
rodent models carrying various mutant human 
SOD1 genes (i.e., point mutations with amino 
acid substitutions G37R, G85R and G93A), 
which cause clinical manifestations, mimick-
ing both sporadic ALS and familial ALS. Since 
their development, better understanding of dis-
ease pathophysiology has ensued with mounting 
evidence to support the concept of a multifacto-
rial disease process culminating in apoptosis of 
motor neurons. Mechanisms implicated in this 
process include: glutamate excitotoxicity, oxida-
tive damage, cytoskeletal abnormalities, endo-
plasmic reticulum stress from abnormal cellular 
protein products, mitochondrial dysfunction, 
abnormal microglial and astrocyte function, and 
impaired neurotrophic support [77–81].

Stem cell therapies hold significant promise for 
clinical benefit by offering both the possibility 
of cellular replacement, as well as targeted gene 
modification and neurotrophic factor delivery 

to interrupt these abnormal mechanisms. Based 
on their unique properties, MSCs are playing a 
key role in developing treatment strategies. Both 
murine MSCs and human MSCs have been 
delivered with varying techniques to transgenic 
SOD1 ALS rodent models to evaluate safety, 
effectiveness and disease-altering properties. 
Zhao and colleagues performed intravenous 
injection of hMSC into presymptomatic irradi-
ated G93A mice [82]. They reported that hMSC 
survived over 20 weeks in the recipient mice, 
integrated into the parenchyma of both the brain 
and spinal cord. The transplanted mice had both 
delayed onset and slower disease progression 
with an increased lifespan when compared with 
the untreated mice [82].

Several groups have demonstrated that intra-
parenchymal delivery of hMSCs is safe and can 
delay loss of motor neurons in rodents. Vercelli 
et al. transplanted hMSC directly into the lum-
bar spinal cords of transgenic SOD1 mice. The 
MSCs migrated throughout the spinal cord and 
delayed loss of motor neurons, prolonging motor 
performance [83]. Another study compared the 
efficacy of transplanting olfactory ensheathing 
cells and rat MSCs intrathecally through the 
fourth ventricle in the spinal cord. Although the 
olfactory ensheathing cells distributed widely, 
no significant changes in clinical outcomes were 
observed until after MSC transplantation, when 
female ALS mice showed statistically longer dis-
ease duration than males and control mice [84].

Quantitative pathological analysis has been 
carried out to examine the neuromuscular junc-
tions, ventral root and spinal cord at multiple 
ages in the G93A mouse model. Fischer et al. 
reported histopathologic abnormalities of the 
neuromuscular junctions as the first sign of dis-
ease onset [85]. Approximately 60% of the ventral 
roots suffered damage, with decline of the neu-
romuscular junctions, prior to any development 
of abnormalities in the motor neuron cell body 
or neuroglia [85]. GDNF is a promising factor 
in that it has a high affinity for motor neurons 
and can prevent their death. The protein is large 
and does not cross the blood–brain barrier, so it 
is difficult to directly administer to the brain. 
Svendsen’s group demonstrated that human 
neural progenitors isolated from the cortex 
and modified to secrete GDNF survived up to 
11 weeks in the lumbar spinal cord of rats over-
expressing the G93A SOD1 mutation. Cellular 
integration into both gray and white matter was 
observed with secretion of GDNF within the 
region of cell survival. Fibers upregulated cholin-
ergic markers in response to GDNF, indicating 
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that it was physiologically and locally active [86]. 
Central implantation of GDNF-secreting neu-
ral precursor cells by the same group improved 
maintenance of spinal motor neurons but failed 
to improve hindlimb function [87]. Suzuki et al. 
delivered intramuscular hMSCs that secreted 
GDNF [88]. The MSCs survived within the 
muscle, provided continuous neurotrophic sup-
port, increased the number of neuromuscular 
junctions, ameliorated loss of motor neurons 
within the spinal cord, and improved survival 
and function in ALS rats [88]. Taken together, 
these intriguing results provide support for the 
role of multitargeted treatment strategies and the 
potential for MSCs to deliver augmented neuro-
trophic support.

Many trophic factors have been studied using 
adeno-associated viral (AAV)-mediated delivery 
in ALS. AAV GDNF, IGF‑1 and VEGF have 
demonstrated promising effects in rodent mod-
els, by increasing axonal outgrowth, blocking 
neuronal apoptosis and promoting neurogenesis. 
AAV-delivered HGF retards the progression of 
disease in the transgenic SOD1 mouse model. In 
addition to direct neurotrophic activities, HGF 
functions on the astrocytes of G93A mice to 
maintain levels of EAAT2, a glial-specific glu-
tamate transporter that might be responsible for 
the reduction of glutamatergic neurotoxicity of 
motor neurons. In addition, HGF is capable of 
reducing astrocytosis and microglial accumu-
lation [89,90]. However, AAV-mediated delivery 
presents clinical challenges for treatment in 
humans and there are some safety concerns [91].

Neurotrophic factors that provided benefit 
in the murine model have had mixed results in 
humans. A total of three Phase III clinical trials 
using IGF‑1 protein have failed to produce con-
sistent meaningful effects when delivered sys-
temically through subcutaneous injection. After 
intrathecal IGF‑1 delivery showed promise in the 
SOD1 G93A mice [92], Nagano et al. completed 
a small double-blind clinical trial to assess the 
effect of intrathecal administration of IGF‑1 on 
disease progression in nine patients with ALS 
[93]. They received either high-dose (3 µg/kg of 
bodyweight) or low-dose (0.5 µg/kg of body-
weight) IGF‑1 every 2  weeks for 40  weeks. 
The high-dose treatment slowed the decline of 
motor functions, but not bulbar function or vital 
capacity [93]. This may be caused by gravitational 
effects on the medication and the spinal level 
of intrathecal delivery. MSCs that have been 
genetically engineered to produce IGF-1 may 
provide superior efficacy, as it is well established 
that MSCs migrate through the parenchyma, 

homing to areas of cellular distress, providing 
the opportunity for discrete targeted delivery. 
Efforts from our laboratory are currently explor-
ing the effects of IGF‑1 expression from hMSC 
implanted into both the peripheral muscle and 
spinal cord of SOD1 G93A mice [Joyce n et al., 

Unpublished Data]. 
A human cellular therapy trial has already 

demonstrated progress in the treatment of ALS 
by intraspinal injection. After characterization of 
bone marrow-derived MSCs, Mazzini and col-
leagues transplanted the autologous MSCs into 
the thoracic spinal cord of nine patients with 
ALS [94]. No significant acute or late side effects 
were reported and four of the patients showed 
significant slowing of the linear decline of forced 
vital capacity and the ALS-Functional Rating 
Scale score [94]. A Phase II clinical trial using 
MSCs is underway in Europe, and the US FDA 
has recently approved a Phase I trial in the USA. 
The need for safe and effective cellular treat-
ments is great in ALS. These therapies offer hope 
to patients and their families struggling with this 
devastating disease.

Parkinson’s disease
The goal of cellular therapy to treat Parkinson’s 
disease (PD) is the replacement of lost neurons 
in the substantia nigra with healthy dopami-
nergic neurons or the protection of these neu-
rons from further loss. Potential sources for 
cell replacement have included fetal ventral 
mesencephalon tissue and various stem cell 
types that can differentiate into dopaminergic 
neurons. Numerous experimental replacement 
therapies have been examined in preclinical 
animal models and in clinical trials (reviewed 
in [95,96]). MSCs have also been examined in 
animal models of PD, for their neurorestorative 
effects and as delivery vehicles for production 
of additional factors. 

Jin et al. demonstrated that MSC-mediated 
secretion of neurotrophic factors, such as NGF 
and BDNF, could upregulate tyrosine hydroxy-
lase gene expression in rat E13.5 ventral mesen-
cephalic cells [97]. The ventral mesencephalic cell 
groups that had been co-cultured with MSCs 
showed a higher expression of both tyrosine 
hydroxylase and dopamine than those that had 
not been co-cultured with MSCs. These pro-
teins were not expressed in the MSCs, indicating 
that the co-culture had upregulated expression 
in the neuronal cells [97]. Bouchez et al. studied 
the effects of transplantation of bone marrow-
derived MSCs in a rat model of PD. The MSC 
graft was demonstrated to reduce the behavioral 



 
 

 
 

 
 

 

Author P
ro

of 

Regen. Med. (2010) 5(6)8 future science group

Review Joyce, Annett, Wirthlin, Olson, Bauer & Nolta MSC for neurodegenerative disease Review

effects induced by a 6‑hydroxydopamine lesion 
(a model for PD), and was demonstrated to 
partially restore the dopaminergic markers and 
vesicular striatal pool of dopamine [98]. Sadan 
et  al. conducted an efficacy study using the 
6‑hydroxydopamine-induced lesioned rat model 
of PD. MSCs or BDNF-secreting MSCs were 
transplanted on the day of 6‑hydroxydopamine 
administration. Amphetamine-induced rota-
tions were measured as a primary behavior index. 
An MRI study conducted with iron-labeled cells, 
followed by histological verification, revealed 
that the engrafted cells migrated toward the 
6‑hydroxydopamine lesion, and regeneration of 
the damaged striatal dopaminergic nerve termi-
nal network was observed. The BDNF-modified 
MSCs ameliorated amphetamine-induced rota-
tions by 45% and inhibited dopamine depletion. 
In these studies, the neurotrophic factor-modi-
fied MSCs were more effective than the innate, 
unmodified MSCs [99].

Glial-derived neurotrophic factor and its 
relative, neurturin, have been demonstrated 
to restore function in damaged dopaminergic 
neurons (reviewed in [100]). A major barrier to 
clinical translation has been delivery. Factors 
delivered by intracerebral injection in patients 
have been ineffective, probably owing to lim-
ited distribution within the putamen. A recent 
trial of neurturin therapy showed promise but, 
unfortunately, did not achieve significance in the 
Phase II evaluation [101]. The trial had used an 
AAV vector to deliver neurturin, a technique that 
had been demonstrated to be effective in preclin-
ical animal trials (reviewed in [102]). However, the 
human brain is vast and the vector probably did 
not achieve sufficiently widespread distribution 
to allow correction of significant regions of the 
damaged neurons. By contrast, delivering MSCs 
near the damaged region of the brain might be 
an option to deliver neurturin more widely, since 
they would continue to migrate to the most dam-
aged parts of the brain, using natural chemotaxis 
and will pump out their transgene product for 
at least 18 months. Therefore, the use of MSCs 
as the delivery vehicle, rather than vector alone, 
could potentially have the capacity to improve 
and extend the results observed in the prior 
neurturin trial.

In a study recently reported by Li et al. two 
subjects with PD, who had transplanted fetal 
mesencephalic dopaminergic neurons that had 
survived for over 10 years, developed a‑synu-
clein-positive Lewy bodies in the engrafted 
donor neurons [103]. Although the majority of 
grafted cells were functionally unimpaired after 

a decade and the recipients still experienced long-
term symptomatic relief, this study provided evi-
dence that the disease can propagate from host 
to graft cells. MSCs are highly interactive with 
their microenvironment, and can share protein, 
RNA and even mitochondria with damaged tis-
sues [Olson s et al., Manuscript in Preparation] [39]. 
In addition to providing factors to the injured 
neurons (Figure 1), MSCs could also be susceptible 
to accruing material from the damaged host cells 
in PD, Alzheimer’s disease, and HD. This is an 
interesting aspect to clinical MSC therapies and 
should be monitored in preclinical studies.

Clinical trials of MSCs for  
neural repair
The ability of MSCs to secrete factors to decrease 
motor neuron death when implanted into the 
CNS of ALS patients was assessed in a human 
clinical trial conducted by Mazzini et al. [94,104]. 
Ten patients with ALS who had severe func-
tional impairment of their legs were enrolled in 
the MSC clinical trial with no adverse events. 
MSCs were isolated from the patients own 
bone marrow and expanded using good manu-
facturing practice conditions. Expanded MSCs 
were suspended in the autologous cerebrospinal 
fluid and transplanted into the recipient’s spi-
nal cord at a high thoracic level. No immedi-
ate or delayed transplant-related toxicities were 
observed. Patients were enrolled and regularly 
monitored before and after transplantation using 
clinical, psychological, neuroradiological and 
neurophysiological evaluations. At 3  months 
after cell implantation, a trend toward slowing 
of the decline in muscular strength was observed 
in the legs of four of the first seven patients 
treated. Since this was not a randomized study, 
the results are not definitive; however, they do 
show that MSC infusion into the cerebrospinal 
fluid could be tolerated without adverse events 
in patients with ALS [94].

A pilot trial using either intravenously or 
intrathecally injected MSCs has been conducted 
by Karussis and colleagues in 12 patients diag-
nosed with untreatable neurodegenerative dis-
eases – ALS or MS [105]. Their intent was to 
demonstrate the safety of the delivery methods 
and treatment with autologous MSCs. Karussis 
et al. initiated the pilot trial after in vitro and 
preclinical investigations had demonstrated 
immunomodulatory effects of MSCs with sup-
pression of self-reactive T lymphocytes [201]. In 
addition, animal studies in mice with chronic 
progressive experimental autoimmune enceph-
alomyelitis showed mitigation of their clinical 
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course accompanied by histopathologic evidence 
of neuroregeneration following intracranial and 
intravenous injection of MSCs. One adverse 
event was reported during the course of the pilot 
study – one patient experienced transient menin-
geal irritation following the intrathecal delivery 
route. The authors speculated that the symptoms 
were caused by exposure of residual dimethyl 
sulfoxide after improper resuspension of frozen 
cells by an inexperienced technician [105]. This 
study was extended to include ten ALS and ten 
MS patients, demonstrating proof of concept 
that both delivery methods were feasible and 
safe. The group are currently conducting a larger 
Phase I/II trial delivering autologous MSCs as a 
treatment in patients with severe refractory MS 
[201].

Multiple sclerosis is generally considered an 
autoimmune disease, characterized by chronic 
progressive CNS demyelination and inflam-
mation, leading to severe disability. Many 
Phase I/II trials have been conducted in the MS 
patient population using hematopoietic stem 
cell transplantation, with reports of prolonged 
symptom-free periods and reduced functional 
impairment [106–111]. However, conditioning 
regimens, including lymphocytic ablation, 
have significant risks of increased morbidity 
and mortality [107,110]. Case reports and a small 
pilot study including ten patients with MS 
treated with autologous MSCs have been con-
ducted with intriguing results and few, if any, 
adverse events [112,113]. Treatment with autolo-
gous MSCs, based on their immunomodulatory 
and neuroregenerative properties, is now being 
investigated as a safer alternative to hematopoi-
etic stem cell transplantation [107]. Currently, 
there are at least four clinical trials being con-
ducted at centers in England, Israel, Spain and 
the USA, which are evaluating the safety and 
efficacy of bone marrow-derived MSCs in the 
treatment of MS [202].

Direct injection of MSCs into the injured 
region of the brain during surgery following 
traumatic brain injury has also been performed 
without adverse events. Seven traumatic brain 
injury patients each received up to 10-9 expanded 
MSCs during the cranial repair operation [114]. 
Patients were followed up for 6  months and 
demonstrated signif icant improvements in 
neurologic function. Placebo-controlled trials 
for MSC injection into the CNS for traumatic 
brain injury and stroke, as well as spinal cord 
injury and neurodegenerative disorders are cur-
rently ongoing in countries outside of the USA 
[203]. No adverse events have been reported 

from these studies. Clinical trials of an MSC-
like multipotent cellular product, Multistem, 
has been approved by the FDA to treat stroke in 
the USA [115,116]. The clinical trial is currently 
being conducted by the company Athersys (OH, 
USA). Osiris therapeutics (MD, USA) has con-
ducted multiple clinical trials using allogeneic 
MSCs administered through systemic infusion. 
No stem cell-related events have occurred and 
their studies provide extensive safety and provi-
sional efficacy data for allogeneic bone marrow-
derived MSC administration to patients through 
FDA-approved clinical trials [117–119].

The potential benefit-to-risk ratio and, in par-
ticular, safety are always the foremost consider-
ations by the FDA. This article has covered the 
potential benefits of MSC-based therapies for 
the treatment of neurodegenerative diseases. We 
and many others have documented the biosafety 
of MSC therapies, which are now in Phase III 
trials for some indications, and further safety 
and efficacy data are being collected by numer-
ous groups. Extending MSC-based therapies to 
neurodegenerative diseases, in particular those 
for which there are currently no effective treat-
ments, such as HD and ALS, would have a high 
potential benefit-to-risk ratio. 

Future perspective
This article reviews several strategies for MSC-
based neural repair that are under consideration 
or are currently being tested in human Phase I 
clinical trials. We predict that the future of 
this area of regenerative medicine will encom-
pass even more applications for this approach. 
Adequate biosafety and efficacy studies have 
now been completed in multiple animal models 
to allow safe Phase 1 clinical trials following all 
approvals by regulatory agencies. 

A biosafety concern remains when consider-
ing the use of genetically engineered MSCs. The 
random integration of vectors carrying genes for 
neurotrophic or other factors could run the risk 
of insertional integration. However, the fields of 
homologous recombination and targeted gene 
delivery are rapidly advancing and we predict 
that integration into a ‘safe harbor’ site in MSCs 
could be carried out in the near future.

Another exciting advance is the generation 
of MSCs from human embryonic stem cell and 
induced pluripotent stem cell lines. Since human 
embryonic stem cell and induced pluripotent 
stem cell lines are continually dividing, clonally 
derived lines with genes that have been success-
fully integrated into a safe site, they could be 
continually expanded and fully characterized 
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prior to differentiation to MSCs. Whether these 
human embryonic stem cell and induced plu-
ripotent stem cell-derived MSCs will have the 
same functions in vivo and similar safety profiles 
as the adult MSCs remains to be determined.

In summary, we predict that in future years, 
infusion of banked, genetically engineered allo-
geneic or cell line-derived MSCs will be used to 
treat multiple areas of human neural disease and 
damage, including additional neurodegenerative 
diseases and acute brain injuries.
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Executive summary

Mesenchymal stem cells in neural repair: an overview
�� Upon transplantation, mesenchymal stem cells (MSCs) in the brain promote endogenous neuronal growth, decrease apoptosis and 

regulate inflammation, primarily through the use of secreted factors.
�� Numerous clinical trials have demonstrated the biosafety of systemic infusion of allogeneic MSCs into patients with various diseases. 

Monitoring of biosafety aspects has been performed throughout these trials.
�� Therapies will capitalize upon the innate trophic support from MSC or on augmented growth factor support. 

Expression of neuroregulatory factors by MSCs
�� MSCs can secrete multiple factors that stimulate growth of neural progenitors and neuritogenesis.
�� In addition to neurotrophic factors, the extracellular matrix molecules produced by MSCs have also been demonstrated to support neural 

cell attachment, growth and axonal extension.
�� MSCs also provide an excellent platform from which to produce additional factors for neural regulation, introduced using viral vectors 

under inducible promoters for the treatment of specific diseases.

Disease models
�� The transplantation of MSCs directly into the brain has been demonstrated in models of Huntington’s, Parkinson’s and other diseases. 

Clinical trials of MSC for neural repair
�� Ongoing clinical trials of MSC infusion into the brain and spinal cord (tissues of the CNS) are discussed.
�� Extending MSC-based therapies to neurodegenerative diseases, in particular those for which there are currently no effective treatments, 

such as Huntington’s disease and amyotrophic lateral sclerosis, would have a high potential benefit to the risk ratio.
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